Sound generation in the searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction.

نویسنده

  • Martin A Connaughton
چکیده

The Northern searobin (Prionotus carolinus) contracts its paired sonic muscles alternately rather than simultaneously during sound production. This study describes this phenomenon and examines its effect on sound production by recording sound and EMGs during voluntary and electrically stimulated calls. Sounds produced by a single twitch resulted in a two-part sound representing contraction and relaxation sounds. The relaxation sound of one twitch coincides with the contraction sound of the next twitch of that muscle. Maximum amplitude of evoked sounds occurs between 100 Hz and 140 Hz, approximately half the fundamental frequency of a voluntarily calling fish. The muscle is capable of following electrical stimulation at frequencies of up to 360 Hz. Rapid damping and response over a wide frequency range indicate that the swimbladder is a highly damped, broadly tuned resonator. A consequence of alternate contraction is a 3.3 dB loss in acoustic pressure due to the contraction of a single sonic muscle at a time. This decrease in amplitude is offset by a doubling of fundamental frequency and a constructive interaction between the sides of the bladder, resulting in increased amplitude of each unilaterally produced sound. The alternate contraction of the bilateral sonic muscles represents a novel solution to the inherent trade-off between speed and force of contraction in rapidly contracting sonic muscles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation.

To categorize variation in disturbance calls of the weakfish Cynoscion regalis and to understand their generation, we recorded sounds produced by different-sized fish, and by similar-sized fish at different temperatures, as well as muscle electromyograms. Single, simultaneous twitches of the bilateral sonic muscles produce a single sound pulse consisting of a two- to three-cycle acoustic wavefo...

متن کامل

Acoustical properties of the swimbladder in the oyster toadfish Opsanus tau.

Both the swimbladder and sonic muscles of the oyster toadfish Opsanus tau (Linnaeus) increase in size with fish growth making it difficult to distinguish their relative contributions to sound production. We examined acoustics of the swimbladder independent of the sonic muscles by striking it with a piezoelectric impact hammer. Amplitude and timing characteristics of bladder sound and displaceme...

متن کامل

Sound production mechanism in carapid fish: first example with a slow sonic muscle.

Fish sonic swimbladder muscles are the fastest muscles in vertebrates and have fibers with numerous biochemical and structural adaptations for speed. Carapid fishes produce sounds with a complex swimbladder mechanism, including skeletal components and extrinsic sonic muscle fibers with an exceptional helical myofibrillar structure. To study this system we stimulated the sonic muscles, described...

متن کامل

A superfast muscle in the complex sonic apparatus of Ophidion rochei (Ophidiiformes): histological and physiological approaches.

In teleosts, superfast muscles are generally associated with the swimbladder wall, whose vibrations result in sound production. In Ophidion rochei, three pairs of muscles were named 'sonic' because their contractions affect swimbladder position: the dorsal sonic muscle (DSM), the intermediate sonic muscle (ISM), and the ventral sonic muscle (VSM). These muscles were investigated thanks to elect...

متن کامل

Variation in swim bladder drumming sounds from three doradid catfish species with similar sonic morphologies.

A variety of teleost fishes produce sounds for communication by vibrating the swim bladder with fast contracting muscles. Doradid catfishes have an elastic spring apparatus (ESA) for sound production. Contractions of the ESA protractor muscle pull the anterior transverse process of the 4th vertebra or Müllerian ramus (MR) to expand the swim bladder and elasticity of the MR returns the swim blad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 207 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2004